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LAMINAR SLIP FLOW HEAT TRANSFER IN A PARALLFEL-
PLATE CHANNEL OR A ROUND TUBE WITH
UNIFORM WALL HEATING
by Robert M. Inman

Lewis Research Center

SUMMARY

An analysis has been made to determine the effects of low-density phenom-
ena on the heat-transfer characteristics for laminar flow in a parallel-plate
channel or in a circular tube with uniform wall heat flux. Consideration is
given to the slip-flow regime wherein the major rarefaction effects are dis-
played as velocity and temperature Jumps at the conduit walls. The results ob-
tained apply along the entire length of the conduit, that is, in the thermal en-
trance region ac well as far downstream. The solutions contain a series expan-
sion, and analytical expressions for the complete set of eigenvalues and eigen-
functions for this problem are presented. The results give the wall tempera~
tures, Nusselt numbers, and thermal entrance lengths for the conduits for vari-
ous values of the rarefaction parameters. The results indicate that the slip-
Tlow Nusselt numbers are lower than those for continuum flow at all axial loca-
tions along the conduits, and also that the thermal entrance length is decreased
with increasing gas rarefaction for either the parallel-plate channel or the
circular tube. Extension of the results is made or indicated to include the ef-
fects of shear work at the wall, modified temperature Jump, and thermal creep
velocity.

INTRODUCTTION

In recent years, under the impetus of space flight, considerable interest
has developed in the study of the fluid-flow and heat-transfer characteristics
of rarefied gases. Most of the investigations have been concerned with external
aerodynamic situations. Only very recently has attention been directed to the
problem of heat transfer to rarefied gas flow in conduits, in particular, to
forced-convection heat transfer. The corresponding problem for continuum flow
has, of course, been the subject of much analysis and experimentation, and it is
now possible to predict the heat-transfer performance for laminar continuum flow
in a parallel-plate channel or in a circular tube with arbitrary axial wall tem-
perature (refs. 1 and 2) or axial wall heat flux (refs. 3 to 7).
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Of particular interest in internal, rarefied gas-flow studies has been the
problem of laminar heat transfer in conduits under slip-flow conditions
(ref. 8). The essential simplifications introduced in these investigations to
obtain analytical solutions are fully established temperature profiles and
fully developed velocity distributions.

The present investigation is concerned with the more general problem of
determining the heat-transfer characteristics along the entire length of the
conduit, that is, in the thermal entrance region as well as far downstream, for
laminar slip flow in a parallel-plate channel or in a circular tube with uni-
form wall heat flux. It should be mentioned at the outset, however, that one
of the simplifications introduced to obtain analytical solutions to the pre-
viously mentioned problem is such that direct application of the results may
not be possible. TIn particular, a fully developed velocity profile that is un-
changing along the conduit length is assumed. While this is a case that is be-
lieved physically reasonable in that portion of the conduit where the fully de-
veloped heat-transfer condition is attained for uniform wall heat flux (ref. 8),
it is perhaps not a good approximation in the thermal entrance region, where
the effect of thermal creep may not be strictly negligible. Nevertheless, it
is hoped that the understanding gained will lead toward the solution of a more
realistic problem wherein the thermal creep effect is included.

In the section FIOW IN A PARALIEL-PLATE CHANNEL there is considered in
some detail the problem of slip flow of a rarefied gas in a parallel-plate
channel with uniform wall heat flux at one or at both walls. Both heating ar-
rangements are frequently encountered in practical applications. The problem
of slip flow in a circular tube with uniform wall heat flux is taken up in the
section FIOW IN A CIRCULAR TUBE. In the final section of the investigation,
modification of the heat-transfer results will be made and/or discussed to ac-
count for such effects as wall shear work, modified temperature Jump, and ther-

mal creep velocity.

SYMBOLS
A,B integration constants defined on pp. 17 and 19, [f(O)]l/4/2
a accommodation coefficient
Ch coefficient in series for temperature distribution in parallel-plate
channel
Cn coefficient in series for temperature distribution in circular tube
Cp specific heat at constant pressure
Dy, coefficient defined by eq. (51) or (58)
D, coefficient defined by eq. (89)
Drp thermal diameter, 8L/o




D

Nu

Pr

Re

R*(1)

tube diameter, Zrg

constants defined by egs. (47) and (56), respectively
dimensionless velocity for parallel-plate channel, u(n)/u
dimensionless velocity for circular tube, u(w)/4

transverse temperature distribution in fully developed region for
parallel-plate channel

specular reflection coefficient

transverse temperature distribution in fully developed region for cir-
cular tube

heat-transfer coefficient, q/(ty - tp)

value of definite integral, eq. (48) or (55) for parallel-plate channel,
eq. (85) for round tube

value of indefinite integral, eq. (53)
Bessel functions of first kind
half distance between plates

mean free path
constant defined by eqs. (86) and (87), respectively

Nusselt number, hDT/k or hd/k

Prandtl number, uCp/k

static pressure

rate of heat flux per unit area from wall to fluid
shear work at wall, defined by eq. (91)

transverse or radial distribution function

Reynolds number, ZéﬁL/p for parallel-plate channel, dﬁd/p for circular
tube

slope of R(n) or R(w) at wall

gas constant



eigenfunctions of eq. (23) for parallel-plate channel
eigenfunctions of eq. (gﬁ) for circular tube

radial coordinate

tube radius

Ttemperature

gas temperature adjacent to wall

velocity

axial coordinate

transverse coordinate

dimensionless velocity slip coefficlent, Eu/ZL or &u/d
%i/zll or %%/afi

s

ratio of specific heats

dimensionless coordinate, x/2L or x/ro
dimensionless coordinate, oy/2L

gas thermal conductivity

eigenvalues of eq. (23) for parallel-plate channel
eigenvalues of eq. (68) for round tube

absolute viscosity

temperature-jump coefficient

velocity-slip coefficient

gas density

symmetry number

rarefaction parameter, uw/Rgt/ZpL or uw/Rgt/pd

dimensionless quantity, RePr/U2 for parallel-plate channel, RePr/4
circular tube

dimensionless coordinate, r/ro

for



Subscripts:

b bulk condition of gas

c centerline

a fully developed region

d,c fully developed region for continuum flow
e entrance region

i gas entering channel, x =0

S slip condition at wall

W wall

0] heated section entrance, x =0
Superscript:

(=) average value

FIOW IN A PARALIEI~-PLATE CHANNEL

The coordinate systems for the problems under study are shown in figure 1.
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{a) Symmetry number, 2. (b) Symmetry number, 1.

Figure 1. - Physical model and coordinate system for parallel-plate channel.

A slightly rarefied gas flows in the positive x-direction with a fully estab-
lished velocity profile. Up to a point x =0 the flow is isothermal at tem-
perature t3. After this point a uniform wall heat flux is applied. It is de-
sired to determine the temperature distribution and the variation in the heat-
transfer coefficient along the entire length of the channel, that is, in the
thermal entrance region as well as in the fully developed region.

It is convenient to place the plane y =0 at the plane of symmetry, that
is, at the middle of the duct in case of heating at both walls at y = tL (fig.
1(a)) and at the insulated wall in case of heating from one side at y = 2L



(fig. 1(Db)).

Both cases are included in the following development by defining a sym-
metry number o, which is also the number of heating surfaces (ref. 4).

The velocity problem is examined first, since the heat-transfer analysis
requires a prior knowledge of the velocity characteristics.
Velocity Problem

The flow is assumed to be governed by the continuum form of the momentum
conservation equation, which, for fully developed incompressible duct flow, re-

duces to

1 0p _ d%y
i )

The slip-flow boundary condition, which permits a slip velocity u. at the
duct walls (y = %L, 0 =2; y =0, 2L, ¢ = 1), is written as (ref. 9)

R gu(%; y=-L
o=¢ (2)
u(+L) =ug = —gu(%_;)yﬁL
w(0) = us - gu(gl;)w
o=1 (3)
u(2L) = ug = 'E“(%>y=zL

The slip coefficient £, 1is given by the expression (ref. 9)

£y =281 (4)

where 1 is the mean free path and g 1is the specular reflection coefficient.

The solutions for the velocity distribution, slip velocity, and average
velocity are found to be



wn) <= & 1) s ]
us:-%zg—%%—l $o=2 (5)
ﬁ:-é’—i%(l+5—£—l-l> )
a(n) = - ZEE (g -2y 4 2
us=-zTL2(%1:2§—‘ﬁ >0 =1 (6)
E:-%’é%};<1+ 6—2%‘) J

From these equations, dimensionless velocity profiles wu(n)/4, which will prove
to be of importance in the heat-transfer problem, can be cbtained:

5 (1- 12+ 4a)

£(n) TR g =2 (7)
£(n) - 81 = 1+ o) o =1 (8)

1+ 6a

where o = gu/ZL. The relation between the average velocity and the slip ve-
locity is easily obtained as

= ¢ =1,2 (9)

Now that the fully developed velocity distributions have been determined,
the solution of the heat-transfer problem is undertaken.

Energy Equation

The starting point of the analysis is the differential equation for con-
vective heat transfer in the parallel-plate channel flow with fully established
velocity profile. With the gas properties assumed constant, the heat conduc-
tion in the flow direction compared to that in the transverse y-direction as-
sumed negligible, and the viscous dissipation assumed negligible, the equation
can be written in the form
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Equation (10) written in terms of dimensionless variables becomes

2
¥E(n) g—z - -gn—g

The boundary conditions are as follows:

Specified wall heat flux:

%% ='%% % at n =1, x=20

Symmetry:
ot
Bﬁ =0 at n=0

Specified entrance temperature:

t =ty at x =0

Fully Developed Solution

(10)

(11)

When the wall heat flux is uniform, it is known that for very large values
of x there is a fully developed thermal situation characterized by a linear
rise in the temperature at all points in the cross section along the channel;

that is,

dtg
= _'O—j_ =
Ox RePr« a 2,1

Equation (12) can be written alternatively as

tg -t 9 3R &(n)
zL g RePr N
0 K

The temperature t3 must satisfy equation (11); that is,

St d%t
a a
ve(n) E

(12)

(13)

(14)

When equation (13) is substitubted into equation (14), the governing equation

for G(n) is

8



~— = £(n) (15)

(186)
q)  _zng
dn n= o K
so that
(&), o -o
dn =0
(17a)
dG)
—— =1
(dn n=1

Consideration of an overall energy balance on the fluid for the length of chan-
nel from O to x produces the additional condition on G(n):

1 h
/ G(n)f(n)dn
1

1
/ G(n)f(n)dn
0

Equations (15), (17a), and (17b) are sufficient to determine the function G(7q).
A different function is obtained for each value of o. The function G(n) for
each case is

]
(@]
Q
It
AV}

> (17b)

Il
(@]
Q
it
[

)

2
Y =R S - (R (S e S PR _
G(n)—[4n g " 280]+[4“+8” 280 | % © |T05|\3 c =z
(18a)
o(n) = 3 -2 2 [2,e. 3L 2 32, |1 ) © s o1
L K ) LI o) BN o] A\ =
(18b)

The first quantity in brackets on the right side of equations (18a) and (18b)
represents the usual transverse temperature distribution for continuum flow
conditions, while the second and third quantities in brackets are connected with
one effect of gas rarefaction, namely, that of velocity Jjump.



Entrance Region

To determine the solution in the entrance region it is convenient to de~
fine a difference temperature te as

te(t,m) = t(6,n) - talt,m) (19)
Then t, must satisfy the relation
ety Do ke (20)
£ 2
with boundary conditions
e
el O at =0 and n =1 (21)

The condition at x = 0 will be discussed shortly.

The solution of equation (20) that will satisfy equation (21) can be found
by using a product solution that leads to a separation of variables. This so-
lution will have the form

te -027\m -éX_L
Lg - CoRp(n)exp\—gzmm— (22)
g K
m=1
where and Ry, are, respectively, the eigenvalues and eigenfunctions of
the Sturm-ILiouville problem:
2
g;g + Af(n)R =0
dn

(23)

%B =0 at 7 =0 and n =1

The coefficients Cp 1in equation (22) are determined in the following
way. When the boundary condition is applied at the entrance to the heated sec-

tion x =0,

te(O;ﬂ) =1t; - td(oﬂl)

Combining this result with equation (13) yields

(o]

te(o:'ﬂ)
g -G(n) =Z CrB (M) (24)
g K m=1

10



This result together with the orthogonality property of the eigenfunctions
leads to \

1
_é' G(n)f(n)Ry(n)dn

T
f £(n)RE(1)an
0

1
-{ G(n)f(n)Rp(n)dn

Cp =

o =2,1 (25)

The integral in equation (25) can be evaluated by substituting G(n) from.equa-
tion (18a) or (18b) and £(n) from equation (7) or (8), integrating by parts,
and utilizing equation (23). The final result is identical for both cases:

1

Cm = o = 2,1 (26)

=
n oA n=L, A=hy !

This result clearly suggests that an analytical solution for the coefficients
Cp 1is possible if expressions for the eigenvalues and eigenfunctions of equa-
tion (23) can be obtained. This possibility will be considered shortly.

The complete solution for the temperature that applies in both the en-
trance and the fully developed regions is found by adding the solutiomns for tg
and t, to give

. 2 % 2 X
UL T o) ) oo (27)
2L g ~ RePr n i (M) eXP RePr
o K
m=1

A result of practical interest is the longitudinal variation of wall tem-
perature b, corresponding to a uniform wall heat flux. Before the wall tem-
perature variation can be determined, however, it is necessary to consider an-
other effect of gas rarefaction that enters through the thermal boundary condi-
tion at the wall, which permits a jump between the surface temperature 1, and
the adjacent gas temperature tg (ref. 9):

ot
'tg -ty = -gt(ﬁ)y=2L/G (28)

11



where £ represents a temperature-jump coefficient related to other proper-
ties of the system by

_2=a 2y 1
&t === T+ 1Fr (29)
For uniform wall heat flux,
3y y=2L/c S % y==L/o K
so that the temperature Jjump at the wall can be written
2L g %%
tg—tw*——&—K'—‘ZL (30)

Setting 71 = 1 in equation (27) and combining the result with equation (30)
yield

2 x 2 X
t - t. g = —67\Iﬂ—
W i 2L of4 2L
= + o+ —_—
2L, g meer ¢+ M Cnfim(L)exp | —5pr (51)
g K
m=1

Another form of this equation is obtained by introducing the bulk tempera-
ture tp,(x). TFor a uniform wall heat flux, the bulk temperature is given by

2L g x
t = ts + g2 9K 2L
b i+ 9w (32)
Combining equations (31) and (32) yields
[
2 X
ty - b ot -0 Ny T
W b T 2L
-—2-_1—&—— =G(1) + CI + CmRm(l)eXp ~RebPr (33)
. o K —
Then, for the fully developed situation,
(ty = tp) ot
d t
—_— = +o——
g W E (3¢)
g K

Dividing equation (33) by (34) yields the important ratio

12



: G2 X
5 - =
t 2L
G(1) + FIv CmBm(l)eXP'——ﬁgﬁE——
t.. -t
W b’a t

g(1) + i

Equation (35) can be evaluated once numerical values of My, Rp(l), and Cp
have been obtained for given values of o or us/ﬁl

The Nusselt number may be determined from the definition of a thermal di-
ameter Dp, which depends on the area of the heating surface (ref. 4). TFor the
present analysis, Dp = 8L/G. Then, when this definition is applied,

hD
Nu = L = o\ 8L
K ty - tp OK
3
When equation (38) is used,
4
Ny = — - - (28)
£ -o%hm 37
a(1) + 55t CoRpy (1) exp| —55r
m=1

The longitudinal variation of the local Nusselt number along the duct, equa-
tion (36), can likewise be evaluated as soon as numerical values of Ny, Cp,
and Rp(l) have been obtained.

It is of interest to examine the behavior of the Nusselt number at the en-
trance of the heated section (x = 0) and also in the fully developed region
(x » w). At the entrance,

4

T 3
G(1) + ;ii + n; C Ry (1)

Nuo =

From equation (24), however, setting n =1 yields

6(1) == ) Crfn(1)

m=1

so that

13



4
NUQ=-E§—t- g =2,1 (37)

In the absence of a temperature-jump effect, the local Nusselt number starts
with Nupy - . With a temperature jump, however, the local Nusselt number com-~
mences with a finite value given by equation (37). Thus, one effect of a tem-
perature jump is a lowering of the starting value of the Nusselt number below
its infinite continuum value. The effect of the number of heating surfaces

enters through the symmetry number o.

When equation (36) is used, the fully developed Nusselt number is deter-
mined as

Nuy = oc=2,1 (38)

The function G(1) is evaluated from equation (18a) or (18b) by setting 71 = 1.
The fully developed Nusselt number then becomes for each case

Nug = 140/1.7 > — o=2 (39a)
1.8 %, 2 (U\, 10t
175  5L\g 17 2L
140/13
Nud= g =1 (59b)

o

2
26 4 78 \u 13 2L
Tn the absence of rarefaction effects, the fully developed Nusselt number
Nug . has the value 140/17 =8.23(¢ = 2) or 140/13 = 10.77(¢c = 1). From
equation (39a) or (39b), it is clear that the effects of velocity jump ug £ O
would tend to increase the Nusselt number, while the temperature Jjump would act
to decrease the Nusselt number. Similar results have been observed in the case
of circular-tube slip flow (ref. 8).

1 -

Numerical values of the entrance Nusselt number (eq. (37)) have been
evaluated as functions of the parameter p-~/R t/ZpL and related to the mean
free path 1 by the relation (ref. 8) (uq/Rgt/ZpL) = ~/2/7(1/2L). The values
are plotted in figure 2. The values for 7y and Prandtl number are representa-
tive of air and most diatomic gases. Fully developed Nusselt numbers as given
by equations (39) have been evaluated as functions of the two parameters ug/u
and £4/2L and are plotted in figure 3 in the form of the ratio Nud/Nud’c
where Nu is the appropriate fully developed continuum value. For small
values of ’§t/2L the slip velocity increases the Nusselt number above its con-
tinuum value, while for large §t/2L the slip velocity has almost no effect.
It is noteworthy that the effects of gas rarefaction are more pronounced in the

14



case of two-sided heating (o

Ratio of fully developed Nus-
selt number to fully developed

soon as the eigenvalues
have been determined.

Nusselt number for con-

Nusselt number at heated-
section entrance, Nug

It is of interest to present the Nusselt number ratio

tinuum flow, Nug/Nug ¢

I O 00

.01

~=
I\

> Ratio of

5 = slipto

P Lo average

z > \ velocity,

;; \\ US/U
. 5%
Accommodation J
coefficient, g2
2 S %
120— ——— 0.4 =0
=~ 53
\ Symmetry =3
\ number, B85
80——\ o o c
S =
\ 83
\ =3
N 23
40—\ 5 E.
[« =
______ | I | |
0 02 .04 .06 .08 .10 0 .25 .50 15 1.00

' Rarefaction parameter, #‘/RgtIZpL

Figure 2. - Effect of gas rarefaction on entrance Nusselt

number for parallel-plate channel.

Accommodation
coefficient,

Symmetry
number,

N R
.02 .04 .06 .1 .2
Rarefaction parameter, ,u‘/RgtIZpL

Figure 4. - Fully developed Nusselt num-
ber variation in parallel-plate channel
with uniform wall heat fiux. Specular
reflection coefficient, 1; ratio of specific
heats, 1.4; Prandtl number, 0.73.

Nn, eigenfunctions
The function Rj(n) is the solution of equation (23):

Temperature-jump coefficient, &y/2L

Figure 3. - Fully developed Nusselt numbers for
uniform wall heat flux for parallel-plate channel.

2) than in the case of one-sided heating (o =1).

Nud/Nud c _8s a
function of the single parameter ﬁw/Rgt/ZpL.
This is done in figure 4 for v = 1.4,

Pr =0.73, g 1, and a = 1.0 and 0.4. The
effect of gas rarefaction is always to de-
crease the value of the Nussell number below
its continuum value, the result again being
more pronounced for two-sided heating than for
one-sided heating. Moreover, the differences
in results are greater for a = 0.4 +than for
a = 1.0.

Transverse Distribution
Function R(n)

As mentioned previously, the dimension-
less wall-to-bulk temperature difference
(ty = tp)/(tw - tb)gs, equation (35), and the
local Nusselt number Nu, equation (36), can
be evaluated along the entire duct length as

Bm(n), and series coefficients Cp

15



2
4R AF(n)R = O

dnz
(40a)
%% =0 at n=0 and n =1
The normalization convention
R(O) =1 (40b)

is also used.

For convective heat transfer in laminar continuum flow in a parallel-plate
channel with uniform wall heat flux, Sellars, Tribus, and Klein (ref. 1) have
obtained asymptotic formulas for the eigenvalues and coefficients through a
generalization of constant-wall-temperature results. An improved and more di-
rect treatment of this problem has been given in reference 4. It is of interest
to apply the method of reference 1 to laminar flat duct slip flow.

In accordance with the method of reference 1, a solution of the form
R(n) = exple(n)]

is considered, where

1/2 €2
e = N en + eq + + .
0] 1 7\]_72

and, since A 1is assumed to be large, only the first two terms of the previous
series are retained (ref. 1). Then it can be shown that the asymptotic solu-
tion for R(7n) is given by

n n
A exp|inl/2 / £(n)1/2 an| +B exp|-1nl/2 / £(1)1/2 an

R(n) 0 © 2,1
= — I - . . et e e e pen s~ = om oz it 2 g =
M fl/4 ’

(41)

where A and B are constants to be determined. It should be noted that, for
continuum flow (ug = 0), a singularity exists in equation (41) at 71 =1 since
[f(l)]a=0 = 0; this has required the development of an alternate solution,
valid near 71 = 1 (refs. 1, 4, 6, and 7). TFor slip flow, no singularity exists
at n =1 since [f(l)]q%o =ug/t for o =2 and 1. Consequently, equa-
tion (41) should be a good approximation over the range O < n <1 for slip
flow, once the constants A and B have been evaluated. As the constants are
anticipated to be different for the cases ¢ =2 and ¢ =1, each case will be
considered separately.

16
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For the case o = 2, the constants A and B are determined from the
continuation of equation (41) to the channel central zone n = O, where R(7)
can be approximated by the cosine function

R(n) ~ cos[(A£(0)Y 271" q=o0 (42)

and thus it is found that to make equations (41) and (42) equal for small 1,
it is required that

A g 201"
2
so that
1/4
R(n) = [%%%%] / cos(%l/zl) (43)
where ‘
£(n) =§lif 6;4(1
us 31+ 4o
(0 31
" 1/2 [ﬁ(l - n2 + 4@)1/2 + (1 + 4a)arc sin —————lL——7r}
T = ()1 2an = (é) o . (1 + 40/
8 (1+ 6a)L/2
0

(44)

The slope of R(n) at the wall is found by differentiating equation (43)
with respect to 1 and by setting 7 = 1. The result is

(%§>n=l = R'(1) = % (l + 4a)l/4(4a)-5/4 COS<%1/211>

2(2a)®/ 2(2)1/2 (31/21,)s1n(31/21, )

TI3(L + 6a)i/2

(45)

where

17



1 1/2 . 1
(4a) + (1 + 4a)ar sin ————"—373
I, = / f(n)l/zdn = (—Z’)l/z """ - (2 + 4t/ ()

/ S Y el/E

For R'(1) =0, a series of eigenvalues Ny with the corresponding eigen-
function Ry can be obtained as roots of the characteristic equation

(4@)1/2

B, tan By = e g LS o (47)

where B, = Ki/ZIl, and E, for a given value of «, is a constant. Tabulated

values of the first five roots of equation (47) for a number of values of E
are given in reference 10. The values of I; for any given slip velocity are
shown in figure 5.

To obtain the coefficients Cp (eq. (26)), equation (45) is differentiated

with respect to A, the result is multiplied by A, and then A is set equal
to Ay There is finally obtained

d2R 1 1/4,  \-5/4 i

Hence,

When equation (43) and the values 7 =1 and N =%, are used,

1.00

1/4
Rp(l) = (l~+-£a) / cos By (50)

It is convenient to define a new co=-
efficient Dy, given by the product
of Cp and Ry(1l), as

1]

b=l
=2}

Value of definite integral
for parallel-plate channel,
~0
(2]

Lo ]
.4 .6 8 1.0 /4

a
D, = C 1) = - _Pa_ 51
Figure 5. - Value of definite integral for parallel-plate m mRm( ) 2 ( )

channel for any value of slip to average velocity ratio. E+ 1+ _n

<

.2 .
Ratio of stip to average velocity, uc/u
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Equations (47) and (51) can be used to calculate the eigenvalues N, and
coefficients Dy for any given value of « or ug/u. In the interests of a
unified presentation of results, however, such calculations will be delayed un-
til after the unsymmetrical case o = 1 has been treated.

For the unsymmetrical case, the formal asymptotic solution (eq. (41)) is
first continued to the insulated wall, n = 0, where R(7) can again be approxi-
mated by the cosine function

R(n) ~ cos{[A£(0)1M/2af  n~o

The coefficients A and B are determined to be A =B = [f(O)]l/4/2, so that

1/4
R(n) = {%%] cos(\L/2) (52)
where
2 [0
f(n) =’6(n1-+n6af )
(o8 u
£0) =13 =3
and

T
Js/ £(n) Y 2an
0

1/2
(g) / l:al/z +(2n - 1)(n - 2+ )2

ol

(1L + 4a)arc sin ———37—1 -2 - arc sin 1
N N I Nt R S Wl
(1 + 6@)1/2 . 4
(53)
2
It should be noted that, for continuum flow o = 0, equation (53) is not a
good approximation to R(n) as n - 0, since [f(0)],_9 = O, and hence another
solution, valid near n = O, must be developed (ref. 4). With slip flow no
singularity exists at n = O.

Continuation to the heated wall 1 =1 results in

R(1) = cos(A/2.4) (54a)
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] [4((1) 3/261/? (xl/? .{Lzsm_(?\l_/z -ﬁ)]

t = -Le Xl/z ..
R'(1) = (4a) {cos(W/2r) S )T (54b)
where
1
S = / e(n)/ 2an

0

(gpe Lo s o
8 (1 + 6&)1/2

=1 (55)

When R'(1l) = 0, another series of eigenvalues A, with the corresponding
eigenfunction Ry 1s obtained as roots of the characteristic equation

(4@)1/2 + (]_ + 4;@)31*0 sin (___~_12__>.]7§
- L+ da)7

32

il

Pm tan Pp T
2(4a)

F

Il

ZE (56)
where now Bp = %i/2~’i = xi/ZIl.

From the eguations developed so far, the coefficients Cp and
Dy = CpRy(1l) are obtained readily as

2 -l
1 B
Cp = <% 7= ) e = -8q (% + 1+ igacos B (57)
En 57\ T]:l, 7\2?\m
Dy = - ____Bi__BE (58)
F+l+ o

Equations (47) and (51) for o =2 or equations (56) and (58) for o¢=1 in
conjunction with figure 5 (p. 18) contain all the information essential to the
determination of the dimensionless wall-to-bulk temperature variation (eq. (35))
and Nusselt number (eq. (36)) along the entire length of the channels. These
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expressions for the pertinent eigenvalues and coefficients are remarkably sim-
ple in form and obviously lead to relative ease in computation. It should be
recalled that these expressions were derived on the assumption that N, is
large, and consequently the expressions are supposedly valid only in that
limit. The use of these equations for obtaining the first four eigenvalues and
coefficients for parametric slip-velocity wvalues of 1/3 and 5/5 yields numer-
ical results that appear to fall between the results for continuum flow ug =0
and slug flow ug/i - 1 even for values of m as small as 2. This may be
seen from the tabulation and comparison shown in table TI(a) for symmetrical
two-sided heating o = 2, or in table I(b) for unsymmetrical one-sided heating
o = 1. The results for continuum flow were obtained from expressions presented
in reference 4, while for slug flow, the eigenvalues were obtained -as the posi-

. . 1/2 2
tive roots of sin N/~ =0 or %i/ = mit. The coefficients D, were ob-
tained from the equally simple result Dy = =2/M\.

The numerical value of 1/3 for ug/U corresponds to E&/2L = 0.0833,
while a value of 3/5 for ug/UT corresponds to £u/2L = 0.25. This latter
value may perhaps be outside the slip regime. The results for ug/U =1 (slug
flow) are definitely outside the slip regime but have been included as limiting
values and for comparison.

To check the level of accuracy of the foregoing results, the eigenvalues
and eigenfunctions of equation (40a), as well as the coefficients C, given by
equation (25), were computed on an electronic (IBM 7094) computer, by the
Runge-Kutta method, for ug/d = 1/3 and 3/5. The eigenvalues and coefficients
so obtained are listed in table I. The relevant quantities as computed from
the previously presented analytical expressions are in remarkably close agree-
ment with the TBM values, especially for values of m > 2. The fact that the
asymptotic formulas give such excellent results for values of m as small as 2
is somewhat surprising. In view of the very good level of agreement that has
been demonstrated, it is concluded that the asymptotic formulas are suitable
for m > 2. '

The variation of the dimensionless wall-to-bulk temperature difference
along the ducts can be evaluated with the numerical information given in ta-
ble I. Before proceeding with the evaluation, however, it is illuminating to
examine the wall-to-bulk temperature difference at the entrance of the heated
section. With x = 0, equation (35) becomes

- ok
(t, - ) o(1) + g—Lt- +ZCmRm(l)
0

m=1
_w _®o_ __ m= (59)
L., -t ok
(% b)d a(1) + 2Lt

When 1= = 1, however, equation (24) becomes
a(1) = - S CrnRm(1)
m=1
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TABLE I. - EIGENVALUES AND COEFFICIENTS FOR SLIP FIOW IN A
PARALLETL-PLATE CHANNEL WITH UNIFORM WALL HEAT FLUX

(a) Symmetry number, 2.

Ratio of slip to average velocity, ug/u
0 1/3 3/s 1
Analytical | Numerical [Analytical| Numerical
solution | solution, solution | solution,
Runge-Kutta Runge-Kutta
method method
Eigenvalue
1/2
Ay 3.540 | 3.78 3.33 3.35 3.23 3.14
A%/Z 6.800 | 6.72 6.49 6.41 6.36 6.28
AL/2 10.05 9.78 9.65 9.54 9.50 9.42
/2 |13.30 | 12.90 12.82 12.69 12.65  |12.56
Coefficient .
Dy -0.2090( -0,1479 -0.2331 -0.2110 -0.2264 [-0.2030
Dy -.0703| -.0642 -.0701 -.0813 -.0818 -.0508
Dz ~.0367| =-.0332 ~.0336 -.0z282 -.0280 -.0226
D, -.0230{ -.0198 -.01897 -.0165 -.0161 -.0127

(b) Symmetry number, 1.

Ratio of slip to average velocity, us/ﬁ-

0 1/3 3/5 1
Analytical| Numerical [Analytical| Numerical
solution | solution, solution | solution,
Runge-Kutta Runge-Kutta
method method
Eigenvalue
)\i/z 3.800 | 4.09 3.50 3.51 3.35 3.14
1/2
Kz 7.071 6.99 6.66 6.51 6.46 £.28
1/2
%5 10.33 10.01 9.82 9.61 9.58 9.42
Ki/z 13.60 13.09 12.98 12,72 12.71 12,56
Coefficient
Dl -0.1470( -0.0711 -0,1821 -0.1685 -0.1920 ~0.2030
Dy -.0525 ~-.0425 -.0583 -.0567 -.0566 -.0508
Dy -.0278 -,0259 -.0291 -.0271 -.0267 -.0226
Dy -.0176 -.0169 -.0175 -.0156 -.0154 -.0127
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Dimensionless wall-to-bulk temperature difference at

so that

o]3
(ty - %), Z—LE
7 = - (60)
(ty = tp)y ofy,
a(1) + T

In the absence of s temperature-jump effect, the wall-to-bulk tempersture dif-
ference is zero at the entrance. With a
‘temperature Jump, however, the entrance

10— ) ) temperature difference has a nonzero value.
s%gﬁigaﬁ Equation (60) has been plotted in figure 6
gdﬁ V as a function of the two parameters ug/T

and gt/ZL for o =2 and 1. For either
wall heating situation the entrance temper-
ature difference increases with an increas-
ing value of gt/ZL. The magnitude of the
slip velocity has only a small influence on
the quantity (ty —tb)o/(tw-tb)d for

o =1, while for o =2 the influence of
slip velocity is more proncunced. It is
also seen that rarefaction effects are more
strongly exhibited in the two-sided heating

0, Lty = byt ~ byl

Symmetry
number,

X =

2 than in the one-sided heating situation.
0 ! J é é The variation of the wall-to-bulk tem-
Temperature-jump coefficient, &4/2L perature difference along the duct length
Figure 6. - Variation of dimensionless wall-to- has been evaluated from equation (35) for
bulk temperature difference at heated section several values of the rarefaction parame-
entrance for slip flow in parallel-plate channel ters u /E and Et/ZL. Plots are given in
with uniform wall heat flux. : S
figures 7 and 8 for o =2 and o =1, re-
spectively.

Inspection of figures 7 and 8 reveals several interesting trends. First
of all, for a fixed value of £4/2L, the wall temperature variation is more
sensitive to the slip velocity over most of the duct length for the unsymmet-
rically heated channel ¢ = 1 than for the symmetrically heated channel
g = 2. Near the entrance, however, the reverse effect is obtained. TFor both
wall heating situations, the slip velocity has the effect of retarding ty - ©p
in its approach to the fully developed value, while the temperature Jjump has
the opposite effect. Finally, it should be noted that the abscissa scale for
g =1 is twice that for o = 2. Thus, the length required for the wall-to-
bulk temperature difference to approach fully developed conditions is greater
for the unsymmetrically heated channel than for the channel heated uniformly
from both walls.

It is the practice to define a thermal entrance length as the heated
length required for +ty - tp tTo approach within 5 percent of the fully de-
veloped value. A horizontal dashed line corresponding to an ordinate of 0.95

is shown in figures 7 and 8. Then, for example, with us/ﬁ'= gt/ZL =0, it is
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Dimensioniess wall-to-bulk temperature difference, {ty - tb)/(tw - tb)d
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Ratio of slip to

I_ average velocity,
uglu

L

o

Ratio of slip to
average velocity, .8
[~ uglu

|13,

— — — Dimensionless wall-to-bulk
temperature difference
(0.95)

.2 I I I I

— — — Dimension{ess wall-to-bulk
temperature difference
(0.95)

:7[ —- — Extrapolated

N L

I I I | |

. . (a) Temperature-jump coefficient, 0.
(a) Temperature-jump coefficient, 0.

I I I |

4 | | I I
(b) Temperature-jump coefficient, 0.1.

Dimensionless wall-to-bulk temperature difference, t, - tb)/(tW - thd

'70 .02 .04 .06 .08 .10
Dimensionless axial distance, (x/2L)/RePr .
" ici 7 I | I I |
(¢} Temperature-jump coefficient, 0.4. 0 04 08 1 16 =
Figure 7. - Wall temperature ratio in thermal entrance Dimensionless axial distance, (x/2L}/RePr
region for flow in parallel-plate channel with uniform r L.
wall heat flux and different values of temperature-jump (c) Temperature-jump coefficient, 0.4.
coefficient. Symmetry number, 2. Figure 8. - Wall temperature ratio in thermat entrance

region for flow in parallel-plate channel with uniform
wall heat flux and different values of temperature-jump
coefficient. Symmetry number, 1.
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found that the continuum-flow thermal entrance length is given by

(x/2L)/RePr = 0.045 (o = 2) or 0.144 (o = 1). With gas rarefaction the thermal
entrance length may shorten, remain the same, or perhaps increase, depending on

the relative magnitude of the parameters ug/T and £+ /2L.

Tt is perhaps somewhat more illuminating to present the variation of the

wall-to-bulk temperature difference in terms of the rarefaction parameter
u-\/Rgt/ZpL. This has been done in figure 9. The effect of increasing gas

Rarefaction Rarefaction
parameter, parameter,
1.0 04’ _
; 06672‘{’ -
[<}]
- 2/ Accommodation
IO 5= 8 : coefficient,
TE ¢ 7. 0667, a
sed
£5% —_
SEY —_—- .4
- ] ] — — — Dimensionless wall-to-
c E 2
s e bulk temperature
s = difference (0.95)
2 L | | | | | | | | |
0 .02 .04 .06 .08 100 .04 .08 .12 16 .20

Dimensionless axial distance, (x/2L)/RePr

(a) Symmetry number, 2. (b} Symmetry number, 1.

Figure 9. - Wall temperature ratio in thermal entrance region for flow in a parallel-plate channel with uniform wall heat

flux. Specular reflection coefficient, 1; ratio of specific heats, 1.4; Prandgtl number, 0.73.

26—
Temperature-jump
coefficient,
20— 40 Et/ZL
—_— 0
Ratio of slip to —_— 1
average velocity, . —_— 2
16 ug/u 32

12
ug/u

Nusselt number, Nu
5
,///

!

ﬂ

Ratio of slip to
average velocity,

BN N T 16
==
SSE g
~h— -l e 7. anldegplioy piea N ergr koot
4 VT 7 8
3/5~ i
1/3
I | I I |
0 .02 .04 .06 .08 0 0 .04 .08 .12 16 .20
Dimensionless axial distance, (x/2L)/RePr
(a) Symmetry number, 2. (b) Symmetry number, 1.

Figure 10. - Variation of Nusselt number along paraliel -plate channe! for uniform wall heat flux and different values of

temperature-jump coefficient.
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rarefaction is to shorten the thermal entrance length. The accommodation coef-
ficient also has an important effect on the thermal entrance length, and this
is associated with the increase 1in temperature Jjump with decreasing accommoda~-
tion coefficient.

The longitudinal variation of the Nusselt number along the duct with uni-
form heat flux at one or both walls (eq. (36)) has been evaluated, again by
using the data of table I (p. 22) and plotted in figure 10. It is seen that
the velocity and temperature Jumps give rise to opposite changes in their ef-
fect on the Nusselt number variation; the velocity jump tends to increase Nu
at a given axial position, while the temperature Jump tends to decrease Nu.
Numerical evaluations of the Nusselt number dependence on the parameters
uq/Rgt/ZpL and a have been plotted in figure 11. Clearly the effect of the

12— Accommodation

4 coefficient,
a
Rarefaction
10— parameter, 20 — 1'2
8— 16— Rarefaction

parameter,

Nusselt number, Nu
<
(=3
[
i

0 .02 .04 .06 .08 100 .04 .08 12 16 -.20
Dimensionless axial distance, (x/2L)/RePr

(a} Symmetry number, 2. (b) Symmetry number, 1.

Figure 11. - Variation of Nusselt number along parallei-plate channel for uniform wall heat flux. Specular reflection
coefficient, 1; ratio of specific heats, 1.4; Prandtl number, 0.73.

gas rarefaction is always to decrease the Nusselt number below 1ts continuum
value at every position along the heated length.

FIOW IN A CIRCULAR TUBE

Attention is now turned to the case of axially symmetric slip flow in a
circular tube. The coordinate system for the present problem is shown in fig-

ure 12.

It is again assumed that the velocity profile is fully developed and is
unchanging along the tube length. The velocity distribution and the fully de-
veloped heat-transfer characteristics have already been investigated for the
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q

Figure 12. - Physical model and coordinate system for round tube.

.circular-tube case (ref. 8) and many re-

sults obtalned are immediately applica-
ble. The development of the round-tube
system is similar to that of the

parallel-plate channel. It is, there-

. fore, only necessary to explain the

mathematical development in a sketchy
way, by discussing the points that dif-
fer from the parallel-plate channel
case.

The differential equation for convective heat transfer is now

ot

pCpu 3% =

K O r ot
T or (61)

The assumptions and restrictions of this equation are the same as previously

explained.
becomes

2e () -gg

The velocity distribution wu, the slip
U have been given in reference 8 as

2
0 dp
4y dx

du
g = -gu(__)
r

When written in terms of the dimensionless variables, equation (61)

w ot

K7} (62)

_l0
= W
velocity ug, and the average velocity

\
2
(1 - o) + ug

— —

(63)

)

From equation (63) there is easily obtained the dimensionless velocity profile

f(w) and the slip velocity ug/%:

2 4
1 -0+ 4a — ~u
flo) =2 “55%g * =7 (64)
Us 8a
== = = 65
= (1) =755 (65)

Tt may readily be shown that for large
file tg exists in the form

x a fully developed temperature pro-
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tg -ty 4

X
o Rebr g H(w) (66)
K

where the radial function H(w) has been given in reference 8 as

2
_a? - L 4-1-(& N R N -
Hw) = w 7O =T > W 7 © T1+24‘ = (67)

The solution for the thermal entrance region can be shown to have the form

X
t, -4, o
& = CpRy(w)exp — ey (68)
K
n=1

where 7\n and R, are, respectively, the eigenvalues and eigenfunctions of
the Sturm-Liouville problem:

d dR
%(a) d_U.)) + 22naf(w)R = O
(69)
% =0 at w=0,1

The coefficients C in equation (68) are obtained from the result

n

1
- f 20H(w) £ (w) Ry, (w) dw
0

1
/ 20H(w) £ (w)Ry (w)dw
9 ———— (70a)

B 3°R
[R(a)) 3w 57\:L>=l, A=Ay

or

1

n = (7\ 3R \

c S
3o 57\>w=l, Nhy

(70b)
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To obtain equation (70a), the result

Hw) = - zm: CpRp () (71)
n=1

was used. The similarity between equations (70b) and (26) is noteworthy.

The complete solution for the temperature that applies along the entire
tube length is obtained by summing equations (66) to (68) to obtain

o0
X X
b -ty 4 ;6 -4hp o
arp ~ RePr + H(w) + Can(w)exp RePr (72)
K
n=1

The temperature-jump effect at the tube wall is given by

ary &
0 °%
bg -~ ty =2 T (73)

Hence, the wall temperature along the length of the tube is obtained as

o]

X X
tW - ti 4 }—5 th C.R _47\1’1 I‘O
= + — + _
arg RePr + H(1) d n n(l)exp RePr (74)
K n=1

This equation can be rephased in terms of the bulk temperature tb(x) with the

result
X
th - 4N I'O
H(l) + T+ Can(l)e@ RePr
tW - tb - . . n=l (75)
(ty - tp) 2g
vt H(1) + —d—t
where
qr 2kt
('tw - tb)d_ == I:H(l) + T:| (76)
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and
aro 4x

bp(x) =5 + géP;O (77)

The Nusselt number may be determined from the definition

h(2ry) 2r
Nu = oL _ .4 0 (78)
K 'tw-t'b K
When equations (76) and (77) are used, the result obtained is
2
Nu = ” (79)
X
26, M 75
+____ g ep———
H(1) T+ CpBin(1)exp| 55y
n=1
The Nusselt numbers at the entrance of the heated section Nuy and in the
fully developed region Nuy are readily obtained from equation (79) as
1
Nug = — 80
Yo =E, (80)
a
/0. (81)

Nu, =
d 2
6 Us . 1 <us) L85

L2 2y (2
-7 T\

The effect of temperature jump on entrance Nusselt number (eq. (80)) is shown
in figure 13. The effects of gas rare-
faction on the fully developed Nusselt
number (eqg. (81)) have been considered in
reference 8.

S
l

(=]
=]

The method used to solve the

A dati
%$22£$m parallel-plate system is completely ap-

plicable and can be adopted practically
unchanged to determine the asymptotic be-
. | havior of equation (69) at large values
0 ) o % '& 'ﬁ of A. By applying this method, it can
medmnmmmaﬂ,F¢§ﬂm be shown that the asymptotic solution of
equation (69) is given by (ref. 11)

£
(=]

Entrance Nusseft number, Nu,

Figure 13. - Effect of gas rarefaction on entrance Nusselt
number for a round tube.
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1l/4
R(w) = (ﬁw)_l/zé%§> / cos(kl/zi - %) (82)
where
o 1l - o? + 4q
o) =2 5575
T =

w
1/2 _ - 2 1/2 arc sin ——2
/ [Zf(w)] dw (D(l w~ + 4&) + (l + 4:@) rc n _(l + m)l;z%lﬁ»/

0
(83)
It is noteworthy that for continuum flow equation (82) has a singularity at
w = 1, and, consequently, continuation to the wall zone w =1 requires the
development of an alternate solution valid near ® = 1 (refs. 1 and #%¥ For
slip flow, equation (82) is continuous throughout the interval 0 < w < 1.

The slope of R(w) at the tube wall R'(1l) is found by differentiating
equation (82) with respect to , and then by setting o = 1, which yields

v -3 (2) () oS/ (778 + w]eos(n3/78,)

b A
+ [_M(xl/gil) + N]sin(%l/zil)} (84)

where

1 (4a)l/2 + (1 + 4a)arc sin=*————l———7—
% = / [2£(w)]  2am = e 2”_(,1. O AT
o (1 + 8a) /:
M= - %LQI)B(é--»~--- T (86)
(4a)l/2 + (1 + 4a)arc sin ?If:‘2;3i7§
N=1-4a (87)

Setting Rf(1) = 0 yields the eigenvalues A, as roots of the characteristic
equation

MB, + N

WE, =T (88)

tan B, =
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1.6 _ l/2~ ~
& where B = A/ “I7. The values of Ij
'ga; for any given slip velocity us/ﬁ' are
€3 15 shown in figure 14.
e2
£8 The coefficients of the series ex-
A | | | | pansion (eq. (74)) are
0 2 4 .6 .8 1.0
RmmoMHMmemewwdw,%m _ -16a
o Dy = CyRp(1) = o (89)
Figure 14. - Values of definite integral for any value of N 2
slip to average velocity ratio in round tube. N+ W + MBn

v

Table II shows the first four eigenvalues and coefficients for the case of
flow in a round tube. The results for continuum flow (ug/d = O) were obtained
from expressions given by Dzung (ref. 3), while for slug flow (us/ﬁ-» 1) the

eigenvalues were obtained as the roots of Jl(2%n)l/2 = 0, vhere Jj; 1is a Bes-
sel function of the first kind and the first order. The coefficients Dy are
then obtained from the simple result Dy = -1/A,. Also shown in table II are
the data obtained through the use of an IBM 7094 computer by the Runge-Kutta
method. It is apparent that the asymptotic formulas yield values of sufficient

accuracy for n > 2.

TABLE IT. - EIGENVALUES AND COEFFICLENTS FOR SLIP FLOW IN A

CIRCULAR TUBE WITH UNIFORM WALL HEAT FLUX

-
Ratio of slip to average velocity, us/ﬁ-
. 0 2/s 2/3 1
Analytical| Numerical [Analytical| Numerical
solution | solution, colution | solution,
Runge-Kutta Runge-Kutta
method method
Eigenvalue
1/2
Kl 2.531 —-——— 2.55 2.64 2.60 2.710
X%/Z 4,578 4.71 4.63 4.75 4.74 4,955
ARl E 6.599 | 6.76 6.69 6.88 6.86 7.195
)\i/z 8.610 | 8.81 8.75 9.00 8.98 9.425
Coefficient
Dl ~0,1985| ~=-= -0.1855 -0.1670 -0.1658 -0,1360
Dy -.0693|-0,0594 -.0B05 -.0515 ~-.0510 ~.0406
D3 -.0365| -.03086 -.0301 -.0247 -.0245 -.0194
Dy -.0230! -.0217 -.0185 -.0145 -.0144 -.0113

The variation of the dimensionless wall-to-bulk temperature difference for
a uniform wall heat flux has been evaluated and plotted in figure 15 for the
special case gt/d = 0 by using the numerical data of table II. Figure 16
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Figure 15. - Wall temperature ratio in thermal entrance
region of round tube for uniform wall heat flux and
temperature-jump coefficient of zero.
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Temperature-jump coefficient, &t/d

Figure 16. - Variation of dimensionless wall-
to-buik temperature difference at heated
section entrance for slip flow in a round
tube with uniform wall heat flux.

shows the variations in (ty - tb)o/(tw - tp)y due to gas rarefaction.

Numerical values of the Nusselt number variation along the tube length
(eq. (79)) have been evaluated as functions of the two parameters
gt/d and are plotted in figure 17. The trends are similar to those observed

in the parallel-plate channel system.

Temperature-jump

coefficient,
&yd
— 0
—_—-— 1
12 _——— 2
Ratio of slip to
average velocity,
10 ug/u

1

Nusselt number, Nu

=
7
/
/

|
\.F

|

0 .02 .04 .06 .08 .10
Dimensioniess axial distance, (xlro)/RePr

Figure 17. - Variation of Nusselt number along round
tube for uniform wall heat flux and different values
of temperature-jump coefficient.

ug/u  and

The Nusselt number variation can be cal-

Nusselt number, Nu

=3

S

~

Accommodation
coefficient,
a

I 1.0

———

Rarefaction
parameter,

Dimensionless axial distance, (x/rg}/RePr

Figure 18. - Variation of Nusselt number along round
tube for uniform wall heat flux. Specular reflection
coefficient, 1; ratio of specific heats, 1.4; Prandt!
number, 0.73.
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culated as a function of the parameter uq/Rgt/pd. This has been done, and the
results are plotted in figure 18. TIncreasing gas rarefaction and/or decreasing
accommodation coefficient reduces the Nusselt number below its continuum value,
and, in addition, shortens the thermal entrance length, which has been defined
alternatively as the heated length required for the Nusselt number to approach
within 5 percent the fully developed value as given by equation (81).

OTHER RAREFACTTON EFFECTS

In reference 8, modification of the fully developed heat-transfer results
for laminar tube slip flow is made to account for additional slip effects such
as wall shear work, modified temperature Jjump, and thermal creep velocity. For
the sake of completeness, extension of the present more general analyses is
made, or discussed, to include these additional slip effects.

Shear Work at the Wall

Maslen in reference 12 proposed that, when there is a slip flow, an energy
balance at the wall must include the shear work done by the slipping gas.
Analyses given in references 13 and 14 have lent support to this proposal for
tube flow, at least when viscous dissipation within the gas is also considered.

If g denotes the heat transfer at the wall, then for the symmetrically
heated channel ¢ =2 and for the uniformly heated circular tube, Maslen's
proposal is equivalent to writing the temperature derivative at the wall as

K(%E) =q+ ¥ (parallel-plate channel)
(90)
ot * .
K52 =q+ q (circular tube)
Y/ r=rg
where q* is defined in reference 8 as
2
Hug
Q" =g (91)
u

Thus 1f everywhere q formerly appeared there is now written g + q*; the
prior analyses continue to be applicable.

In the case of the channel with unsymmetrical wall heat flux o = 1, the
temperature derivatives at the wall now become

Jt _
K(sy)y=2L sa+ q* = ql
(92)

K@_;—')y:o = -a* = qp
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Clearly, the nature of the problem has changed from one in which the upper wall
is heated while the lower wall is insulated tc one in which the constant heat
rates at the upper and the lower walls are q; and dgp, respectively, and
hence the problem must be reexamined. Such examination will be omitted here.
It suffices to say that such an analysis has been given for continuum channel
flow (ref. 7), and undoubtedly it can be extended to slip-flow conditions.

Modified Temperature Jump
It has been suggested in reference 15 that the temperature jump derived

for a stationary fluid be modified to one for a moving fluid. This proposal is
equivalent to altering equations (28) and (73) to read, respectively,

* ot
t_ -t = =t ( ) (parallel-plate channel) (93a)
g W t 85 y=2L/0'
T e (circular tube) (93b)
g w = t\Sr r=ro

where, from reference 8,

2
* 4y 1 - a g ‘Eg
tW = 't-w + (Y 1 + a CE g) < ) (94)

p

Thus, if +t,;, is replaced by t; at all places, the prior analyses continue to
be applicable.

The foregoing analysis assumes zero shear work at the walls., In the event
of nonzero shear work, it can be shown for the symmetrically heated channel
0 = 2 and for the circular tube that equations (93) must be altered to read

*
+
- té = -ty a+r a (95)

t K

g

Therefore, the previously derived results continue to apply. For the channel
with the lower wall insulated (o=1), the boundary condition becomes

* + *
tg -ty = -y 3_7F3_
at the upper wall, and
*
Era
* t
tg - by = — (96)

at the lower wall. Thus, the problem is now one of unsymmetrically prescribed
gas temperatures adjacent to the walls. Such a boundary condition has been
considered in reference 2 for continuum flow, and undoubtedly the results can
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be modified to cover the present slip-flow problem.

Thermal Creep

When a gas adjacent to a surface encounters a temperature gradient along
the surface, there will be an additional velocity (thermal creep) induced in
the direction of increasing temperature (ref. 18). Equations (2) and (3) must
be altered to read, respectively,

_ ou 3 E§5 <Bt
ug = igu(sg)y=¢L.+ s 5§)y—+L (97a)
ou 3 MRy <Bt)
us =i§u(§§) o TI \& o (97b)
y=|2L Y=z

for the parallel-plate channel system, while for the circular tube the slip
velocity is given by

us = -su(%f)r:ro + 2% (&) (97¢)

r =I'O

The analyses in the earlier sections have not included the thermal creep veloc=-
ity. As a consequence, the velocity field could be determined independently of
the temperature and treated as fully developed. The temperature field, how-
ever, is a function of the velocity (egs. (10) and (61)). If thermsl creep is
not negligible, the temperature and velocity fields are mutually interdepend-
ent, and then a fully developed velocity distribution can be achieved only for
the condition where Ot/0x is a constant. An examination of equation (27) for
the parallel-plate channel system, or equation (72) for the circular tube sys-
tem, shows that Ot/Ox is a constant in that portion of the conduit where the
fully developed heat-transfer condition is attained. In the thermal entrance
region Bt/ax varies with x. The coupled momentum and energy equations might
be solved by successive approximations with the thermal creep velocity assumed
small, but not negligible. Perhaps another approach would be to seek a simi-
larity variable such that the temperature and velocity fields can be described
by a single space variable. The problem would then be reduced to a system of
ordinary differential equations that may be amenable to analytical or numerical

solutions.

In any event, the present solutions without the inclusion of thermal creep
are still very useful as they represent the zero-order solution and the first
step toward the solution of the more complicated situation that exists when the
phenomenon of thermal creep is considered. In addition, it is believed that
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the present solutions have led to a better general understanding of the laminar
heat-transfer characteristics in conduits under slip-flow conditions.

Lewis Research Center

10.

11.

National Aeronautics and Space Administration
Cleveland, Ohio, March 13, 1964
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